
Report

Mullvad API pentest

Emilie Barse, Benjamin Svensson

Project Version Date

MUL007 v1.3 2022-12-20

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

Executive summary

Between 2022-11-07 and 2022-11-29 Assured Security Consultants performed an API

penetration test on behalf of Mullvad VPN.

The in-scope items are the API published on api.mullvad.net, its related services

and configuration. A testing environment was installed on [REDACTED HOSTNAME] to

perform the test against. The test was performed with access to the API source

code and with shell access to the installed test environment.

No critical, high or medium rated issues were identified during the penetration

test and the overall security of the API is deemed good. We identified one issue

related to how secrets are managed in the docker environment, which could expose

unnecessary secrets if an attacker identifies a way to read environment

variables. All other issues are related to the API implementation. There are a

few issues where an attacker could send the API input which is passed directly

to a function without being filtered for any unexpected characters. Even though

we weren’t successful in exploiting these issues, it’s good practice to verify

user input before passing it to functions.

This report is listing the security issues found, along with recommendations for

fixing or mitigating them. In our conclusions we discuss the issues and address

apparent patterns in areas where security is lacking.

Issues were found with the following risk severity assessments (number of

issues):

Critical 0 High 0 Medium 0 Low 7 Note 5

We recommend to

• Implement Hashicorp Vault to manage secrets in Docker

• Remove unnecessary read-write permissions on bind-mounts in docker

• Implement encryption in transit for the Redis serivce

• Verify user input and only accept expected data. If any special characters

is required these should be handled with extra care

• Remove account numbers from GET request URLs

• Handle the unexpected error in /app/v1/replace−wireguard−key

• Use the same type of throttling with IP-blocking for both authentication

endpoints. Or use the same authentication endpoint for both use cases

i

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

• Enforce increased complexity and length of the admin passwords, implement

blacklist.

Assured would like to thank Simon, Alexander, Grégoire, Michal and Richard for

their support during this penetration test. We are happy to answer any questions

and provide further advice.

ii

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

Contents

1 Introduction 1

1.1 Background . 1

1.2 Constraints and disclaimer . 1

1.3 Project period and staffing . 1

1.4 Risk rating . 1

2 Scope and methodology 3

2.1 Scope . 3

2.2 Methodology . 3

2.2.1 Tools used . 4

2.3 Limitations . 5

3 Observations - Docker 6

3.1 Low Unencrypted network traffic to Redis 6

3.2 Note Unnecessary read-write permissions on bind-mounts 7

3.3 Note Secrets in docker-compose.yml and environment variables . . . 8

4 Observations - API 10

4.1 Low HTML injection in email . 10

4.2 Low Unverified user input . 10

4.3 Low IP blocking can be circumvented 11

4.4 Low Sensitive information in URL 12

4.5 Low Admin password change does not enforce policy 12

4.6 Low Potential Slowloris attack (DoS) 13

4.7 Note Unexpected behaviour of refund with amount zero 14

4.8 Note Recent actions shows wrong amount on refunds 15

4.9 Note Unhandled error . 16

5 Conclusions and recommendations 17

iii

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

1 Introduction

1.1 Background

Assured AB (Assured) was contracted by Mullvad VPN to perform a security

assessment on their API and related source code.

1.2 Constraints and disclaimer

This report contains a summary of the findings found during the project period.

This report should not be considered as a complete list of all vulnerabilities,

security flaws and/or misconfigurations.

1.3 Project period and staffing

Assured started the project on 2022-11-07 and finished on 2022-11-29.

This report was last reviewed on 2022-12-20.

Involved in the penetration testing were Assured consultants Emilie Barse and

Benjamin Svensson.

1.4 Risk rating

In this report we have assessed the severity of issues and identified

vulnerabilities. The levels of severity are rated according to the OWASP Risk

Rating Methodology [1].

Table 1: OWASP Risk Rating overall severity model

Overall risk severity

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Note Low Medium
Impact

LOW MEDIUM HIGH

Likelihood

As Table 1 visualizes, the overall risk assessment is determined from a combined

likelihood and impact of an identified vulnerability or security issue. A value

from 0 to 9 is assessed for each variable, where 0-2 is determined LOW, 3-5 is

MEDIUM and 6-9 is HIGH.

Likelihood is dependant on attributes related to threat actors and the

identified vulnerability, with factors such as: the skill level and motivations

1

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

of the threat agents; how easily the vulnerability can be found and exploited,

and; how likely an exploit may be detected.

Impact depends on technical and business factors, such as: level of loss of

confidentiality, integrity, availability and accountability; potential financial

damage; potential brand damage, and; potential violations of privacy.

Please note that the severity assessment is made by Assured consultants and

ratings may differ from the resource owners’ ratings.

2

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

2 Scope and methodology

2.1 Scope

The API (api.mullvad.net) and all its related functions are in-scope for this

assessment. A test environment was installed and configured to be used as a

target for the assessment. Part of the test was also the message-queue,

dns-janitor functions and the docker configuration.

The test was done as a white-box test with access to code, credentials for the

different business roles, and ssh access into the test system host. The

environment was setup with access to third party test environment and related

API keys, for services such as Stripe and Paypal.

2.2 Methodology

The test was performed using primarily dynamic testing and source code review.

The source code was mainly used as a support in the dynamic testing and a full

code review has not been performed.

Network traffic and logs were examined during the test to understand the

application flow and to check the management of events in the backend as well as

to identify any personal identifiable information (PII).

Mullvad API The API was tested using static source code analysis for Python

called bandit to find common security issues in Python code. The source code was

also used to aid in the dynamic testing to setup and execute functional API

requests and understanding the business flow of the API.

All endpoints in the API was tested dynamically using Burp Suite Pro.

We followed the OWASP API Security project top 10 list [2] to ensure good

coverage during the test, the list includes the following items:

• API1 Broken Object Level Authorization

• API2 Broken User Authentication

• API3 Excessive Data Exposure

• API4 Lack of Resources & Rate Limiting

• API5 Broken Function Level Authorization

• API6 Mass Assignment

3

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

• API7 Security Misconfiguration

• API8 Injection

• API9 Improper Assets Management

• API10 Insufficient Logging & Monitoring

In addition to this list we examined other areas of importance described in the

OWASP testing guide [3] and not covered by the API top 10 list:

• Business logic

• Error handling

• Weak cryptography

The API is implemented on the Django framework. We investigated the code and

configuration for common security issues related to Django and lack of security

best practices.

Docker The docker configuration was analyzed in runtime using trivy, and

through source code review, identifying configuration issues in the docker

environment.

message-queue The message-queue has one external endpoint which implements a

websocket managing different channels. In this case, only the ”wireguard”

channel exists which is used by relay servers to subscribe to messages about

changes in peer devices. This endpoint was dynamically tested for

authentication/authorization and injection. The code was reviewed and the

network traffic examined to verify how it handles messages.

dns-janitor We performed static code analysis on the source code using gosec to

identify possible issues in the code and analyzed the result.

2.2.1 Tools used

• gosec

• bandit

• Burp Suite Pro

• trivy

4

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

2.3 Limitations

Since throttling is implemented in the API we decided to patch the settings for

throttling allowing us to be more efficient in our dynamic testing.

5

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

3 Observations - Docker

3.1 Low Unencrypted network traffic to Redis

Likelihood: LOW (2), Impact: MEDIUM (3)

The network traffic to the Redis backend is sent in plaintext from an

application layer point of view. However, the network traffic between hosts are

sent in VPN tunnels.

An attacker who is able to intercept the network traffic in the VPN protected

network can get hold of the Redis password and all traffic sent to Redis. The

attacker can use the password to edit any information in Redis which could cause

Denial-of-Service. Plaintext application layer traffic also makes it easier to

perform man-in-the-middle attacks.

Several docker instances are communicating with the Redis backend and some

interesting information is sent over the network.

Figure [REDACTED SCREENSHOT] shows a network packet where the redis password is

sent from the API host ([REDACTED IP]) to the redis_exporter instance ([REDACTED

HOSTNAME]).

[REDACTED SCREENSHOT]

Figure [REDACTED SCREENSHOT] shows the packet sent from the mullvad-api

([REDACTED IP]) to redis ([REDACTED IP]) after a wireguard pubkey is added with

the request POST /www/wg−pubkeys/add/.

[REDACTED SCREENSHOT]

Figure [REDACTED SCREENSHOT] shows the network packet where the paypal

authentication token is updated.

[REDACTED SCREENSHOT]

Security best practice is to encrypt traffic to backend databases and other

services and encrypt traffic where credentials are sent, to implement a

defence-in-depth solution.

Other services communicating between docker instances are also using plaintext

protcols. However, as long as the docker instances are located in the same host

and only communicating on host-local interfaces, this is not an issue.

We recommend using end-to-end TLS encryption on the traffic to redis. If the

infrastructure is changed in the future so that docker instances may end up on

different hosts, be careful to check that any communication between services is

6

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

encrypted.

3.2 Note Unnecessary read-write permissions on bind-mounts

Multiple docker containers bind-mount filesystems from the host. The docker

containers have excessive read-write permissions to some of these mount

points.

The following examples show multiple docker containers where we find the mount

permissions to be excessive. If an attacker identifies a way to breach the

docker container they could write to these directories or files.

Example 1: celery_worker_api-standalone-2

[

{

”Type”: ”bind”,

”Source”: ”/home/mad/api_data”,

”Destination”: ”/var/lib/api/data”,

”Mode”: ”rw”,

”RW”: true,

”Propagation”: ”rprivate”

}

]

Example 2: monitor_api-standalone-2

[

{

”Type”: ”bind”,

”Source”: ”/home/mad/api_cluster/monitor/telegraf.conf”,

”Destination”: ”/etc/telegraf/telegraf.conf”,

”Mode”: ”rw”,

”RW”: true,

”Propagation”: ”rprivate”

}

]

Example 3: api_api-standalone-2

[

{

”Type”: ”bind”,

”Source”: ”/home/mad/api_data”,

”Destination”: ”/var/lib/api/data”,

”Mode”: ”rw”,

”RW”: true,

”Propagation”: ”rprivate”

}

]

7

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

Example 4: dns-janitor_api-standalone-2

[

{

”Type”: ”bind”,

”Source”: ”/home/mad/api_cluster/dns−janitor”,

”Destination”: ”/etc/dns−janitor”,

”Mode”: ”rw”,

”RW”: true,

”Propagation”: ”rprivate”

}

]

Our recommendations is to add :ro to all above bind mounts if write permission is

not necessary for the function of the docker container.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

3.3 Note Secrets in docker-compose.yml and environmentvariables

We identified that the Mullvad API cluster is storing secrets using environment

variables and as clear-text in the docker-compose file. The secrets are placed

in clear-text in a file which is loaded to environment variables when the docker

containers are started.

The following example shows a container with a clear-text password in

docker−compose.yml.

Example 5: Clear-text password in docker-compose.yml

redis−exporter:

container_name: ’redis_exporter_api−standalone−2’

image: bitnami/redis−exporter:1.45.0@sha256:25

eb538edfab6a96cdc4011acfd9cc316ad227aa907f4151efe0de28d2ae8dab

command:

− −−redis.addr=redis://[REDACTED HOSTNAME]

− −−redis.user=[REDACTED USERNAME]

− −−redis.password=[REDACTED PASSWORD]

ports:

− ’[REDACTED IP]:9121:9121’

networks:

nginx:

Docker swarm provides a secret management layer called ”docker secrets”, however

docker swarm orchestration is not used in Mullvads docker setup.

Docker-compose has a simpler implementation of secrets, where the container

mounts a file from the host to use as a secret. Example:

8

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

services:

frontend:

image: awesome/webapp

secrets:

− server−certificate

secrets:

server−certificate:

file: ./server.cert

Still, this implementation would require the secrets to be stored in files on

the host.

After discussions with the Mullvad team we understood that Mullvad is

implementing a Hashicorp Vault instance in their environment to manage secrets

for their services which would be a much better way to include secrets in their

service since Vault will provide encryption at rest, in transit and audit trails

for access to the secrets.

We recommend Mullvad to configure and implement a solution to use Hashicorp

Vault to be leveraged for secrets for their API service.

9

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

4 Observations - API

4.1 Low HTML injection in email

Likelihood: MEDIUM (4), Impact: LOW (2)

As described in section 4.2, users should not be able to input arbitrary data to

functions in the API. We discovered that an unauthenticated user can POST to the

endpoint [REDACTED URL] which allows for any user input. This input constructs an

email, as seen in example [REDACTED CODE EXAMPLE], and sends it to

support@mullvad.net.

[REDACTED CODE EXAMPLE]

Figure [REDACTED SCREENSHOT] shows an example request and response which

resulted in a email being sent to support@mullvad.net.

[REDACTED URL]

Djangos EmailMessage parameter message defaults to content-type text/plain. Therefore

the only way this issue could be exploited requires the receiving e-mail client

to not respect the content-type specified by the sender which is deemed unlikely

since the Mullvad team have internal policies addressing secure e-mail

settings.

We recommend to make sure to filter the user input and verify it only allows for

the expected format for the different email fields. For the message field at

least HTML tag characters should be encoded.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.2 Low Unverified user input

Likelihood: MEDIUM (3), Impact: LOW (1)

All input coming from untrusted sources (such as VPN users) should be used with

extra care in any system. Using unfiltered data from untrusted sources creates

unnecessary attack surfaces. We identified that the endpoint [REDACTED URL] picks

the platform and version as strings from the URL and looks up the values in the

backend database. However, before the values are looked up they are sent as part

of a string to statsd and they are also used for a lookup in the cache

implemented in Redis.

The following code is handling this request:

10

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

[REDACTED CODE EXAMPLE]

We have not seen that the releases parameters can be exploited, and the network

traffic shows that dangerous characters in the parameters are exchanged for ”_”

before they are forwarded to the telegraf docker instance.

0000 02 42 ac 13 00 02 02 42 ac 13 00 04 08 00 45 00 .B.....B......E.

0010 00 7d 2f bd 40 00 40 11 b2 86 ac 13 00 04 ac 13 .}/.@.@.........

0020 00 02 81 a0 1f bd 00 69 58 a7 61 70 70 2e 61 70iX.app.ap

0030 70 5f 76 65 72 73 69 6f 6e 5f 63 68 65 63 6b 3a p_version_check:

0040 31 7c 63 7c 23 70 6c 61 74 66 6f 72 6d 3a 32 32 1|c|#platform:22

0050 32 32 2c 76 65 72 73 69 6f 6e 3a 73 65 6c 66 2e 22,version:self.

0060 5f 5f 69 6e 69 74 5f 5f 2e 5f 5f 67 6c 6f 62 61 __init__.__globa

0070 6c 73 5f 5f 2c 70 6c 61 74 66 6f 72 6d 5f 76 65 ls__,platform_ve

0080 72 73 69 6f 6e 3a 4e 6f 6e 65 0a rsion:None.

We recommend to make sure to filter the user input as soon as possible in the

code and verify it only allows for the expected format used in the URL.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.3 Low IP blocking can be circumvented

Likelihood: MEDIUM (3), Impact: LOW (2)

The endpoints [REDACTED URL] and [REDACTED URL] produce the same type of

authorization token which can be used interchangeably for access to the /app/ and

/accounts/ endpoints. The difference is that [REDACTED URL] will block the IP after

some failed attempts and [REDACTED URL] only implements rate-limiting.

An attacker who discovers that both of these endpoints exist, can easily

circumvent the IP blocking. Figure [REDACTED SCREENSHOT] and [REDACTED

SCREENSHOT] show the two usage of the two auth endpoints.

[REDACTED SCREENSHOT]

[REDACTED SCREENSHOT]

The Mullvad team have made an active choice to implement IP-blocking for their

web authentication endpoint. An mobile app endpoint used for the same purpose

should be considered to be implemented with the same precaution since it exposes

the same functionality.

Though this is not a critical functionality for the security of the API, it is

bad security practice to have to have different functions with different policy

to generate the same authorization token.

11

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

We recommend to either remove one of the endpoints or differentiate the

functionality so that the tokens cannot be used interchangeably.

4.4 Low Sensitive information in URL

Likelihood: LOW (2), Impact: MEDIUM (3)

The account number is included in some [REDACTED URL] GET requests. The account

number is considered sensitive because it is the value used for authentication

and can be compared to a password.

Placing sensitive information in the URL makes it easier for an attacker to get

access to it, than if it is sent in a POST request. The URL with the account

number is stored in the web server logs, it may be stored in the user’s browser

or sent to other sites in the Referer header. In this case, the account number

will at least end up in the nginx access.log. This log is however deleted with a

short interval.

The following GET requests with account number in the URL have been found:

https://[REDACTEDURL]/admin/accounts/account/2245202913091650/change/

https://[REDACTEDURL]/admin/accounts/partneraccount/

de6ccbeccfe74a6ea7aadcd0827e7b52/change/

https://[REDACTEDURL]/admin/accounts/wireguardpeer/?device__account__token_

_exact=2245202913091650

[REDACTED URL]

We recommend to use POST request for all requests handling account numbers, and

to place the account number in the body of the request instead of in the

URL.

4.5 Low Admin password change does not enforce policy

Likelihood: LOW (2), Impact: MEDIUM (3)

There are password policy rules presented on the Password change page in the

admin application which is deemed insufficient for administration services.

Figure [REDACTED FIGURE] shows the rules. It is possible to change to passwords

such as Sommar2022! or the username repeated (<username><username>).

Sommar2022! is a commonly used password, and the username repeated should be

considered to similar to personal information.

12

https://[REDACTED URL]/admin/accounts/account/2245202913091650/change/
https://[REDACTED URL]/admin/accounts/partneraccount/de6ccbeccfe74a6ea7aadcd0827e7b52/change/
https://[REDACTED URL]/admin/accounts/partneraccount/de6ccbeccfe74a6ea7aadcd0827e7b52/change/
https://[REDACTED URL]/admin/accounts/wireguardpeer/?device__account__token__exact=2245202913091650
https://[REDACTED URL]/admin/accounts/wireguardpeer/?device__account__token__exact=2245202913091650

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

[REDACTED SCREENSHOT]

The admin functionality is restricted to the Mullvad internal network, which

reduces the impact.

Our recommendation is to implement a blacklist approach when setting

administrators passwords. Using for example

https://github.com/danielmiessler/SecLists/tree/master/Passwords to check for

commonly used passwords, a more extensive list than the one included in Django.

The password blacklist used should also include Swedish words normally used in

passwords such as Sommar, Vinter, Mullvad, etc. The path to the password

blacklist can be defined with the parameter password_list_path for the validator

CommonPasswordValidator. Since the password can be set to the username repeated

twice, it would be a good idea to increase the max_similarity for the validator

UserAttributeSimilarityValidator to force the users to create password similar to

their user attributes (username, email, etc).

An example implementation can be seen in the example below.

Example 6: Recommended settings for Password Validators in Django

AUTH_PASSWORD_VALIDATORS = [

{

’NAME’: ’django.contrib.auth.password_validation.UserAttributeSimilarityValidator’,

’OPTIONS’: {

’max_similarity’: 0.1,

}

},

{

’NAME’: ’django.contrib.auth.password_validation.MinimumLengthValidator’,

},

{

’NAME’: ’django.contrib.auth.password_validation.CommonPasswordValidator’,

’OPTIONS’: {

’password_list_path’: ’/path/’,

}

},

{

’NAME’: ’django.contrib.auth.password_validation.NumericPasswordValidator’,

},

]

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.6 Low Potential Slowloris attack (DoS)

Likelihood: LOW (2), Impact: MEDIUM (3)

13

https://github.com/danielmiessler/SecLists/tree/master/Passwords

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

Three issues were found using the SAST tool gosec which noted that no timeout

was set when setting up the http server in both dns-janitor and message-queue.

Without a timeout this could lead to a DoS.

Example 7: gosec result

message−queue−main/main.go:154−157 − G112 (CWE−400): Potential Slowloris Attack because

ReadHeaderTimeout is not configured in the http.Server (Confidence: LOW, Severity: MEDIUM)

153:

> 154: server := &http.Server{

> 155: Addr: ∗listen,

> 156: Handler: api.Router(),

> 157: }

158:

Example 8: dns-janitor: gosec result

src/dns−janitor−main/main.go:56] − G114 (CWE−676): Use of net/http serve function that has no

support for setting timeouts (Confidence: HIGH, Severity: MEDIUM)

55: http.Handle(”/metrics”, promhttp.Handler())

> 56: go func() { log.Fatal(http.ListenAndServe(conf.Metrics, nil)) }()

57:

Example 9: message-queue:gosec result

src/message−queue−main/main.go:148 − G114 (CWE−676): Use of net/http serve function that has

no support for setting timeouts (Confidence: HIGH, Severity: MEDIUM)

147: server.Handle(”/metrics”, promhttp.Handler())

> 148: log.Fatal(http.ListenAndServe(”:9999”, server))

149: }()

We recommend to add the parameter ReadHeaderTimeout to your http.server

declaration, see Example 4.6.

server := &http.Server{

Addr: ∗listen,

Handler: api.Router(),

ReadHeaderTimeout: 3 ∗ time.Second,

}

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.7 Note Unexpected behaviour of refund with amount zero

The endpoint [REDACTED URL] handles the amount of 0 as a refund of the whole

payment amount. There is no information about this in the user interface and no

comment in the code. This may be intended behaviour.

Figure [REDACTED SCREENSHOT], [REDACTED SCREENSHOT] and [REDACTED SCREENSHOT]

shows the procedure of adding the 0 refund and the resulting refund page.

14

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

[REDACTED SCREENSHOT]

[REDACTED SCREENSHOT]

[REDACTED SCREENSHOT]

Figure [REDACTED SCREENSHOT] shows the refund in the database.

[REDACTED SCREENSHOT]

Example 10: payments/models.py, class Refund

292 @classmethod

293 def create_object(cls, payment, amount=None, support_user=None, comment=None):

294 if payment.is_refunded():

295 raise exceptions.PaymentAlreadyRefunded

296 if payment.amount < 0 or (amount is not None and amount < 0):

297 raise exceptions.RefundNegativeAmountError

298 if amount and amount > payment.amount:

299 raise exceptions.RefundGreaterError

300

301 try:

302 amount = amount if amount else payment.amount

303 extra_kwargs = cls.before_create_object(payment, amount)

304

305 return cls.objects.create(

306 payment=payment,

307 amount=amount,

308 support_user=support_user if support_user else ’’,

309 comment=comment,

310 ∗∗extra_kwargs,

311)

We recommend to add a comment to the web page and in the code that amount 0 can

be used to refund the whole payment. If it is not intended, the code should be

corrected to give an error for 0 refunds.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.8 Note Recent actions shows wrong amount on refunds

The ”Recent actions” list on the main admin page does not show the correct

amount for 0 refunds, and shows refunds which were not carried through because

of errors.

A refund with amount 0.00000000, where actually the whole payment is refunded,

is shown as 0E-8. A very big refund amount or a negative refund amount, which

were not refunded, are shown like they were refunded.

15

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

[REDACTED SCREENSHOT]

As discussed with the developers, the ”Recent actions” amounts are not the ones

used for accounting, and this may not have much impact.

We recommend correcting the messages to show the actual refund amount, to avoid

confusion for the administrators.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

4.9 Note Unhandled error

Likelihood: LOW (2), Impact: LOW (2)

The endpoint /app/v1/replace−wireguard−key triggers an internal server error if the

following series of requests are performed:

1. Create a device on an account (with no previous devices) using the

/app/v1/replace−wireguard−key endpoint.

2. Remove the device with the request DELETE /accounts/v1/devices/<device ID>

3. Repeat the same /app/v1/replace−wireguard−key request again.

The endpoint response does not give any detailed information more than ”Internal

server error” to the end user, but the log says:

{”levelname”: ”ERROR”, ”asctime”: ”2022−11−18 14:58:20,049”, ”name”: ”core.api.exceptions”, ”

funcName”: ”exception_handler”, ”lineno”: 50, ”message”: ””, ”exc_info”: ”Traceback (most

recent call last):\n File \”/usr/local/lib/python3.8/site−packages/rest_framework/views.py

\”, line 506, in dispatch\n response = handler(request, ∗args, ∗∗kwargs)\n File \”/mullvad−
api/app/views.py\”, line 311, in post\n new_device = register_device(\n File \”/usr/local/

lib/python3.8/contextlib.py\”, line 75, in inner\n return funcargs,

∗∗kwds)\n File \”/mullvad−api/accounts/services.py\”, line 37, in register_device\n

_check_pubkey(pubkey)\n File \”/mullvad−api/accounts/services.py\”, line 116, in

_check_pubkey\n raise PubkeyAlreadyInUse()\naccounts.exceptions.PubkeyAlreadyInUse”}

This is not a security issue in itself, but proper error handling makes the code

more robust and can prevent security problems caused by future changes of the

code.

We recommend adding error handling in the function register_device(), to handle

this case.

NOTE: This issue was reported as fixed by Mullvad prior to the release of this

report.

16

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

5 Conclusions and recommendations

Assured have performed an API penetration test against the test environment

[REDACTED HOSTNAME] which implements the same functionality as api.mullvad.net. The

test was performed using white-box methodology together with source code for the

API and related services and with shell access to the environment.

We followed the OWASP API Security project top 10 list to ensure good coverage

during the test, the list includes the following items:

• API1 Broken Object Level Authorization

• API2 Broken User Authentication

• API3 Excessive Data Exposure

• API4 Lack of Resources & Rate Limiting

• API5 Broken Function Level Authorization

• API6 Mass Assignment

• API7 Security Misconfiguration

• API8 Injection

• API9 Improper Assets Management

• API10 Insufficient Logging & Monitoring

We tested the message-queue functionality and we can connect to the websocket

and receive messages using the proper authentication. However, the websocket

does not accept any incoming messages, which was verified during code

review.

We reviewed the dns-janitor application using a SAST tool (gosec) and brief

manual review. The dns-janitor component does not parse any external user input

and is not possible to interact with from an attackers point. Unless an attacker

compromises the API for remote code execution we couldn’t identify any possible

attack vector introduced by this component.

All objects or UUID we discovered have been tightly related to the users token

and/or groups assigned to the user object.

API1: Objects in the API are referred to using GUIDs, the account number or the

WireGuard public key. These IDs cannot be guessed. In addition, only objects

belonging to the authenticated user can be accessed, even if the ID is known. In

17

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

this case, the objects are mainly the WireGuard public keys and devices.

API2: User authentication is based only on the account number. This is

considered sufficient, since no sensitive information is stored about the user.

A low risk vulnerability found is that two different endpoints exist for

generating authorization tokens for users, where one will block the IP if too

many account number guesses are done and the other will only throttle the

requests. However, it is still unlikely that a user will guess an existing

account number even without IP blocking, and the reward is low. Django’s user

authentication functionality is used, while the authorization token handling is

a custom implementation.

API3: The data exposed by the API endpoints is minimal and no personal

information is stored in the backend. No vulnerabilities have been found in this

area.

API4: Rate limiting and throttling are implemented for endpoints where it’s

reasonable. We couldn’t identify any way to bypass throttling in an exploitable

way for any endpoint.

API5: Authorization of all endpoints in the API has been tested, and no

vulnerabilities have been found. Some endpoints can be accessed without

authorization, but these are intended to be publicly accessible. Different roles

(user, partner, admin) have access to different endpoints, and the access

control for the roles is implemented correctly.

API6: No objects other than the ones expected by the endpoints were processed by

the API. No vulnerabilities have been found in this area.

API7: Django configuration of the API was analyzed and checked against common

security issues. No vulnerabilities have been found in this area.

API8: We aimed to cover all endpoints which take some kind of user input,

starting with the most exposed ones. Some issues were identified in this area.

User input is in some cases not filtered or verified to be as expected by the

API and an attacker could include arbitrary data in the fields. We didn’t manage

to exploit any of these issues.

API9: OpenAPI documentation exists for all public endpoints. However the

internal endpoints lacks documentation and we recommend Mullvad to implement

documentation for those as well.

API10: The logging is minimal in the API and other services. This is by design

to avoid storing any personal information. There is some error logging of events

such as erroneous payment requests. The logging is considered adequate.

18

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

Summary of recommendations:

• Implement Hashicorp Vault to manage secrets in Docker

• Remove unnecessary read-write permissions on bind-mounts in docker

• Implement encryption in transit for the Redis serivce

• Verify user input and only accept expected data. If any special characters

is required these should be handled with extra care

• Remove account numbers from GET request URLs

• Handle the unexpected error in /app/v1/replace−wireguard−key

• Use the same type of throttling with IP-blocking for both authentication

endpoints. Or use the same authentication endpoint for both use cases

• Enforce increased complexity and length of the admin passwords, implement

blacklist.

19

REPORT

Project Version Date

MUL007 v1.3 2022-12-20

References

[1] OWASP, “OWASP Risk Rating Methodology.”

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology, 2019.

[2] OWASP, “OWASP API Security Project.”

https://owasp.org/www-project-api-security/, 2022.

[3] OWASP, “OWASP Testing Guide v4.”

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents,

2016.

20

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://owasp.org/www-project-api-security/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

	1 Introduction
	1.1 Background
	1.2 Constraints and disclaimer
	1.3 Project period and staffing
	1.4 Risk rating

	2 Scope and methodology
	2.1 Scope
	2.2 Methodology
	2.2.1 Tools used

	2.3 Limitations

	3 Observations - Docker
	3.1 (Low) Unencrypted network traffic to Redis
	3.2 (Note) Unnecessary read-write permissions on bind-mounts
	3.3 (Note) Secrets in docker-compose.yml and environment variables

	4 Observations - API
	4.1 (Low) HTML injection in email
	4.2 (Low) Unverified user input
	4.3 (Low) IP blocking can be circumvented
	4.4 (Low) Sensitive information in URL
	4.5 (Low) Admin password change does not enforce policy
	4.6 (Low) Potential Slowloris attack (DoS)
	4.7 (Note) Unexpected behaviour of refund with amount zero
	4.8 (Note) Recent actions shows wrong amount on refunds
	4.9 (Note) Unhandled error

	5 Conclusions and recommendations

